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A model for a two-dimensional lipid bilayer, in which both short-range 
repulsive forces and long-range attractive forces play a role, is solved 
exactly. First, in the absence of attractive forces, the configurational 
entropy is calculated by restricting the lipid hydrocarbon tails to a lattice 
and solving the resulting counting problem exactly. When long-range 
attractive forces which decrease exponentially with distance are acting 
between the polar head groups of the lipids, the partition function can still 
be calculated exactly, using integration over Gaussian random felds. The 
thermodynamic functions show a singularity which reflects the completion 
of the process of self-assemblage of the lipid bilayer. Finally, the model is 
used to test an approximation method for lipid bilayers. 

KEY W O R D S  : Biomembrane; functional integration; free-Fermion model. 

1.  I N T R O D U C T I O N  

M u c h  o f  the  r ecen t  in te res t  in the  p rope r t i e s  o f  b io log ica l  m e m b r a n e s  is due  

to  the  c ruc ia l  ro le  w h i c h  they  p lay  in m a n y  func t ions  o f  the  l iv ing  cell. A la rge  

va r i e ty  o f  m e m b r a n e  s t ruc tu res  has  been  sugges ted .  M o s t  o f  t he  p r o p o s e d  

s t ruc tu res  h a v e  a l ip id  b i layer  in c o m m o n ,  bu t  t hey  differ  in the  m a n n e r  in 

wh ich  the  m e m b r a n e  p ro t e in s  are  a t t a c h e d  to,  o r  e m b e d d e d  in, the  l ip id  
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Fig. 1. A simplified representation of a lipid bilayer. 

bilayer (see, for example, Johnston and Roots <~ for a recent review). The 
lipid bilayer, which is about 60-70 ~ thick, consists of two layers of  lipids, 
with their (nonpolar) hydrocarbon chains oriented inward to form a hydro- 
phobic phase and their (polar) hydrophilic heads oriented outward toward the 
solvent. In a specific biomembrane several types of lipids are found; the most 
abundant ones are lecithin and cephalin. Usually two hydrocarbon tails are 
attached to one head (see Fig. l). 

Calorimetric studies by Hinz and Sturtevant (2~ of synthetic bilayers 
formed from lecithins show that the bilayer undergoes a sharp transition at a 
temperature of about 40~ and probably another, less pronounced transition 
at a temperature of about 30~ Clearly, a phase transition in the membrane 
thermodynamic functions indicates a change in the physical properties of the 
bilayer, which can profoundly influence the dynamical behavior of the pro- 
teins and thus the biological function of the whole membrane. 

A statistical mechanical theory of phase transitions in a lipid bilayer is 
faced with the task of keeping track of the very large number of available 
configurations, i.e., the many different ways in which the hydrocarbon chains 
can be packed inside the bilayer in such a way that the chains do not overlap 
themselves or each other. This constraint leads to great mathematical diffi- 
culties which have only been solved approximately. For example, in a recent 
paper, Marsh (a~ has made a simplifying assumption about the way in which 
the intermolecular steric hindrance between chains restricts their configura- 
tions. In Marsh's model every configuration of  the hydrocarbon chain in 
which two successive C-C bonds are in the gauche conformation is forbidden; 
all other configurations are permitted. This assumption simplifies the counting 
problem for a large number of chains to the counting problem for one hydro- 
carbon chain without neighboring gauche conformations, which can be solved 
straightforwardly using standard (matrix) methods for free polymer chains. 
Whereas such an assumption of course eliminates some of the forbidden 
configurations, others are still counted erroneously as permitted. On the other 
hand, a configuration of a hydrocarbon chain in which two successive C-C 
bonds are in the gauche conformation need not be forbidden provided the 
neighboring hydrocarbon chains have moved out of the way in an appropriate 
fashion. There is clearly a need for: (1) approximation methods in which the 
effect of steric hindrance on the membrane's thermodynamic functions is 
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taken into account more accurately; (2) models which, although not entirely 
realistic, can be analyzed rigorously. 

The present paper is devoted to the analysis of  a model for a two- 
dimensional lipid bilayer in which both short-range repulsive forces and 
long-range attractive forces play a role, and for which several thermodynamic 
functions can be calculated exactly. The model is related to a class of bio- 
membrane models studied by Nagle, C4~ but differs from Nagle's model in that 
the effect of  long-range attractive forces on the thermodynamic functions can 
be studied rigorously. In Section 2 the model is discussed and the configura- 
tional entropy is calculated in the case that attractive forces are absent. 

In Section 3 the polar head groups of the lipids are assumed to attract 
each other with a long-range force which decreases exponentially with in- 
creasing separation. For this choice of  the attractive force the grand canonical 
pressure of  the lipid bilayer is calculated rigorously, using methods of func- 
tional integration. With attractive forces included the model shows some of 
the characteristics of  a self-assembling system. 

It is interesting to use the exact results obtained in Sections 2 and 3 to 
test some approximation methods which hopefully will be of  use to calculate 
the thermodynamic functions of  the more realistic three-dimensional bio- 
membrane models. In Section 4 an approximation method is developed 
which enables one to reduce the calculation of the configurational entropy to 
the determination of the smallest eigenvalue of a partial differential equation 
of the diffusion type. This " con t inuum"  approach to the counting problem 
for the hydrocarbon chains considerably simplifies the calculation of the 
thermodynamic functions. It will turn out that the continuum approach leads 
to an expression for the configurational entropy which forms a very good 
approximation to the exact expression provided the density of  the lipids is 
small compared to the close-packing density. 

2. THE M O D E L  A N D  ITS C O N F I G U R A T I O N A L  E N T R O P Y  

Let the head groups and the hydrocarbon tails of  the lipids be constrained 
to the vertices and the edges of  a square lattice, as indicated in Fig. 2. Since 
we shall be interested in the combinatorics of  the chains the energy difference 
between a trans and a gauche conformation of a C-C bond will be neglected. 
In the next section attractive interactions between the head groups will be 
incorporated, but in this section the thermodynamic functions will be 

Fig. 2. A two-dimensional model for a lipid bilayer. The , , ~ , ,, 
dashed lines indicate the underlying square lattice, the dots ( " )." " ", )~, ;' 
the head groups of the lipids, the heavy lines the hydro- " "~ , . >, , x 
carbon chains of the lipids, i'x'~"'ff"--'x'~"-~"~ ''!~ 
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calculated under the assumption that a lattice vertex can be occupied by at most 
one C atom in a lipid hydrocarbon chain. The chains are not supposed to fold 
back, i.e., a chain has only one point in common with any line parallel to the 
surface of the membrane. The structure of  the head group of the lipid and the 
fact that two chains are attached to one head will be disregarded. Finally, the 
lipids belonging to different halves of  the bilayer are merged in pairs by mak- 
ing their tails continuous. 

Let N = n m  denote the number of  different lattice vertices, and R the 
number of  hydrocarbon chains in the membrane. The grand canonical parti- 
tion function Eo(z) is defined as the generating function 

Zo(Z) : ~, Zo(R)z ~ (1) 
B=O 

where Z o ( R )  denotes the number of  different configurations of R hydrocarbon 
chains in which no lattice vertex is occupied more than once. If one attaches 
a weight factor z to every lattice vertex through which a chain passes, and a 
weight factor 1 to every lattice point through which no chain passes, then 
only five vertex configurations are permitted, as indicated in Fig. 3. With 
these weights of the vertex configurations the model reduces to a special case 
of the "free-fermion model," which has been solved by several authors using 
a variety of  methods. <5-7) The grand canonical pressure is found to be 

In E0(z) 
~po( z ,  P) = lim 

n,,noo~ n m  

- 8~r2jo dO d r 1 6 2  

+ 2z 2 cos(0 - r (2) 

Here/3 = ( k B T ) - 1 ,  with kB denoting Boltzmann's constant and Tthe  absolute 
temperature. One of the integrations can be performed immediately with the 
help of  the formula 

fo 2~ln[A + Bcos  0 + Csin  0] dO = 2~r In[1A + �89  2 - 9 2 - C2) 1/2] (3) 

which holds provided B 2 + C 2 < [A + ( A  2 - B 2 - C2)Z/2] 2. This trans- 
forms (2) into 

f? /3po(z, /3) = (1/4~r) ln[�89 + z 2 + z cos r + I { + z cos 611 d6 (4) 

3< i:< 
Fig. 3. The five permitted vertices of the 
lattice of Fig. 2. In the configuration sum 
(1) these vertices contribute weight factors 
(from left to right): 1, z, z, z, z. 
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which holds for all positive z. The density p0(z)isfound by differentiating the 
pressure with respect to In z: 

Z (a(z) 
po(z) = 1 - a(z)~ + 2--~Jo (2z + 2cos~)(1 + z 2 + 2 z c o s ~ ) - l d ~  (5) 

where 

a(z) - ~ - arccos(1/2z), ~/2 < a(z) ~ (6) 

Note that because the chains cannot fold back on themselves, po(z) is identical 
to both the fraction of lattice vertices occupied by hydrocarbon chains and 
the fraction of lattice points at the outer or inner surface of the membrane 
occupied by head groups of the lipids, i.e., p0 is both the volume density of 
chain repeating units and the surface density of lipid heads. 

For  z < �89 the integral in (4) can again be evaluated with the help of (3), 
leading to 

~po(z, ~) = O, po(Z) = 0, z < �89 (7) 

It is easy to see that such a result was to be expected because the number of 
configurations of a chain of m steps will not grow faster than 2 m with in- 
creasing m. Therefore, for fixed positions of the lipid heads on the inner and 
outer membrane surface the grand partition function (1) has an upper bound: 

E0(z) ~< ~ (2z) mR = [1 - (2z)m] -1, z < �89 (8) 
R = O  

which implies (7). 
For z > �89 the integral in (4) cannot be evaluated in closed form, but (5) 

is transformed by the substitution e ~r = t into an integral which can be 
evaluated explicitly: 

1 (expE,~(~)l z)_ 1 dt 
po(Z) = 1 - a(z)~r + 2-~iJ~ (zt2 + 2z2t + z)(zt2 + t + z2t + t 

(9) 

( 1 )  1,2 1 . 1 (4z2 1)1, 2 = ~rl-arcsin 1 - ~ + ~ arcsm p - z >/�89 (10) 

where in the second term in (10) the arcsin increases continuously from 0 to 7r 
if z increases from �89 to ~ .  For values of z near to �89 the last equation gives 

po(Z) = (4/~r)(z - �89 + O(z  - �89 z ,~ �89 (11) 
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The pressure  is found by in tegra t ion  with respect to In z: 

i; 16( ( 8po(z, 8)= po(Z')z, - 3 :  z -  + 0  z - 2 !  ' z 4 ~  (12) 
2 

The residual  en t ropy  per  lat t ice poin t  is given by 

So(z)/k8 = 8po(z, 8) - po(Z) In z (13) 

and  behave~ in the vicinity o f  z = �89 as 

So(z)/k~ = (16/37r)(z - �89 _ po(Z)In z + O(z  - �89 z ~ �89 (14) 

El iminat ing  z between (11), (12), and  (13), one obta ins  the behavior  of  
pressure  and en t ropy  for small  densit ies o f  h y d r o c a r b o n  chain :  

8Po(p) = (7r2/12)p 3 + O(p4), p ,~ 0 (15) 

So(p)/kB = p In 2 - (Tr2/24)p a + O(p~), p ,~ 0 (16) 

In  a s imilar  way, one obta ins  the asympto t ic  behavior  o f  these t he rmodynamic  
funct ions for  large values o f  z: 

po(Z) = 1 - (1/TrZ) + O(z-2) ,  z---~oo (17) 

fipo(z, 13) = In z + (1/zrz) + O(z-2) ,  z -~  oe (18) 

So(z)/kB = [1 - p0(z)] in z + (l/Trz) + O(z-2) ,  z - +  oo (19) 

f rom which the h igh-densi ty  behav ior  fol lows:  

1 
8Po(p) = (1 - p) + lnTr(1 - p--------) + O(1 - p)2, p ]" 1 (20) 

I___L_ 
So(P)kB - (1 - p) + (1 - p) lnTr(1 - p) + O(1 - p)2, P f' 1 (21) 

which shows that  the pressure diverges and the en t ropy  approaches  the value 
zero with an  infinite negat ive slope when the densi ty  approaches  the densi ty 
o f  close packing.  In  Figs. 4 and  5, the pressure and the en t ropy  are shown 
qual i ta t ive ly  as funct ions  o f  the density.  

/3Po 

~P 

Fig. 4. Qualitative representation of an isotherm for the model 
of Section 2 in which no attractive forces act between the 
lipids. 
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Fig. 5. Qualitative representation of the configurational 
entropy per lattice point for the model of Section 2. 

3. I N C L U S I O N  OF L O N G - R A N G E  A T T R A C T I V E  FORCES 

The model which formed the subject of the preceding section is un- 
realistic especially because of the absence of attractive forces. These forces, 
which hold the membrane together and which are responsible for the self- 
assemblage of the membrane out of a solution of lipids, are due to van der 
Waals interactions, hydrophobic interactions, ionic interactions, etc. Since 
only the head groups of the lipids carry a dipole moment and interact with the 
solvent, it is probably a good approximation to assume that the attractive 
forces act between the head groups only. In this section we shall calculate the 
thermodynamic functions of a biomembrane model which arises out of the 
model of Section 2 when a total attractive force with potential 

V ( x  - x ' )  = - � 8 9  exp(-7 ' lx  - x't) (22) 

is assumed to act between the end points (situated at x and x') of two chains 
on the inner or outer surface of the membrane. So 7-  ~ is the range of the 
attractive force, and W0 is a positive constant which equals the space integral 
of the potential. Since the attractive force acts only at the boundaries of the 
membrane, its presence will not influence the bulk thermodynamic functions 
in the limit in which the thickness m l  of the bilayer goes to infinity. It is only 
when W0 increases with m, 

Wo = mwo (23) 

(where w0 is an m-independent positive constant) that the interactions in the 
membrane surface have a nonvanishing effect on the bulk thermodynamic 
functions. However, since membranes are systems of an essentially finite 
thickness, we shall analyze this model both in the limit m -+ oe and for finite 
m >> 1. In biomembranes m is approximately 40. 

Let the lattice points be labeled with a row index i = 1, 2 ..... m + 1 and 
a column index j = 1, 2 ..... n. The surfaces of the membrane are located at 
i = 1 and i = m + 1. For convenience, cylindrical boundary conditions will 
be imposed by identifying the first and (m + 1)th row. The number of 
different configurations of R chains, each of length ml,  with endpoints at 
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(1,jl), (m + 1,jl ' ) ;  (l,j2), (m + 1,H); . . . ;  (1,jR), (m + 1,jn') will be denoted 
by Q,~(j~',j~', .... jR'[jz,j2,...,jR). This function is related to the canonical 
partition function by 

Zo(R) = ~ '  Qm(jl, J2,..., J~lJ~, j2,..., jn) (24) 
{J) 

where the prime on the summation indicates the constraint 

1 ~<j~ < J 2 <  "'" < J R - ~  <JR ~< n (25) 

With these notations the thermodynamic functions follow from the grand 
partition function: 

R=O {]} 

in the limit n--+ or, m - +  + .  The exponential on the right-hand side favors 
those configurations in which the lipids are packed as close as possible; the 
function Qm, however, favors configurations in which the density of lipids is 
not too near zero or one, as was shown in Fig. 5. The thermodynamics results 
from the competition of these two factors. 

In order to calculate (26) explicitly, one introduces Gaussian random 
functions q)(x) defined for 0 < x < L = 2ln, with a vanishing average, and 
a covariance 

( ~b(x)q~(x')} = - [3 V(x - x') (27) 

Since the applications of functional integration have been reviewed in detail 
in a recent report, <8) we only need to outline the main steps in the calculation. 

With random functions defined by (27) the partition function can be 
written as an average over function space: 

7~(z) = ( exp{mj~= fipo(~ exp[ (1 /m)~j] ) }~  (28) 

where 

= z exp{ + (fi/Zm) V(0)} (29) 

and where Oj denotes the value of the random function at lattice point (1, j ) :  

O/ = O(21j) (30) 

The expression (28) is rigorous only in the limit 7 4 0, but will be a very good 
approximation provided yl << 1. Thus, if the range of the attractive forces is 
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very large compared to the linear dimension of one repeating unit in the 
hydrocarbon chain, the discrete sum in the exponential can be replaced by an 
integral, and one has to evaluate the average over Gaussian random functions: 

E(z)=~expf~f]~po(gexp[~O(x)])dx}~ (31) 

With the special choice (22) for the potential of interaction between the head 
groups of the lipids the evaluation of the average over Gaussian random 
functions is entirely analogous to the solution of the model of Kac, Uhlen- 
beck, and Hemmer in Ref. 8: The average can be written as the ratio of two 
Wiener integrals : 

f+_2 oB(,, LI*, o) do (321 
Z(z) = f2 2 O,o(| LI| o) d ,  

where periodic boundary conditions were imposed on the random functions 
O(x), and where 

(p2 m q~2 
B(q)) - 2p Wo 21 flP~ Bo(O) - 2/? W0 (34) 

The Wiener integral (33) is the propagator of a differential equation of the 
diffusion type and has an expansion 

GB(O, L[ O, 0) = ~ If.(O)l=e-E- L (35) 
n 

in terms of  the eigenvalues and eigenfunctions of the corresponding differential 
operator: 

[-�89 2) + B(qb)]A(qb ) = E.f~(O) (36) 

Substitution of (35) and the corresponding expression for the denominator 
into (32) gives the partition function for a membrane of finite thickness ml 
and a finite length L: 

Z(z) : [~ exp(- EnL)]/[~ exp(- E.~~ (37) 

The grand canonical pressure of a membrane which has finite thickness ml 
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but infinite length is thus found to be 

[3p(z,/~) = lim I l nE  = 2/(Eo<O~_ E o ) -  
n~,~ mn m 

where we used the harmonic oscillator spectrum : 

G <~ = (n + 1)v, 

yl  2 lEo  (38) 
m m 

n = 0, 1,2 .... (39) 

The pressure is determined by the ground state of the eigenvalue problem 
(36). The substitutions 

q~(x) = m 4 ( x ) :  Eo = m% 

and the introduction of (23) transform this eigenvalue problem into 

1 , y d 2 (~2 ~l [3po(~e ) lfo(6) = %fo(4) 

(40) 

(41) 

in the remainder of this section the result (38) will be considered for two 
specific situations: (a) in the limit m -~ c~; (b) for finite m >> I. 

(a) The case m--+oo. For a membrane of infinite thickness the limit 
m- - +~  implies the classical limit of the eigenvalue problem (41), so the 
pressure is given by 

�9 [ 14, 2 ] 
[3p(z, [3)= --mln[fi--~o -- /3po(~e*)J = [3po(~e ~o) (42) 

[3Wo 

where q~o is that solution of 

214,o//3Wo = po(~e| (43) 

which minimizes the expression in the square brackets. Since the density is 
given by 

p(z, [3) = po(~e| (44) 

the equation of state is found to be 

P(p, [3) = Po(p, [3) - (wo/4l)p 2, p > ps(T) (45a) 

provided the right-hand side is nonnegative. The density p~(T) is the solution 
of 

Po(p~, [3) = (wo/4l)ps 2 (46) 

For densities smaller than ps the pressure vanishes: 

p(p, [3) = O, p < ps(T) (45b) 

From (15), (46), and Fig. 4 it is easy to see that p~(T) decreases from 1 to 0 if 
T increases from 0 to oo. For fixed temperature, ps increases from 0 to 1 if Wo 
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Fig. 6. The solid line is a qualitative representation of an , ~ /  
isotherm of the model of Section 3 in the limit of infinite , 7  
thickness of the bilayer. The isotherm of a bilayer of finite / 
thickness, indicated by the dashed line, approaches the solid 
line very rapidly with increasing m(71 )- 1, as indicated by Eq. - - -  " 
(47). Ps(Y) 

~p 

increases from 0 to oo. The  equat ion  of  s tate is sketched in Fig. 6. It is 

in teres t ing to note  that  the equa t ion  o f  state o f  this system always shows two 
phases  regardless  of  the t empera tu re .  

(b) The case 1 << m < oo. F o r  a m e m b r a n e  of  finite thickness,  Eq. (41) 
is an eigenvalue p rob lem for a quan tum mechanica l  par t ic le  in a potent ia l .  
Due to the p rope r ty  (7), the po ten t ia l  equals  4>2/2/~Wo for 4> ~< - l n  %. The 
g round  state e 0 will now be slightly larger  than the abso lu te  min imum of  the 
po ten t ia l  and  an analyt ic  funct ion of  ~. The isotherm is indica ted  qual i ta t ively  
in Fig. 6 by the dashed  line. The  phase  t rans i t ion  at p = ps(T) develops  only 
in the l imit  m --~ oo. A calcula t ion o f  the g round  state with the W K B  method ,  
indica ted  in Ref. 8, shows tha t  the pressure  in the po in t  O -- ps(T) is small ,  o f  
o rde r  

~P(Os, $) ~ e x p ( -  cm/7l ) (47) 

where c does not  depend  on m or  71. Since the exponent ia l  is p r o p o r t i o n a l  to 
the p roduc t  o f  the m e m b r a n e  thickness  and the range o f  the a t t rac t ive  forces, 
it is seen tha t  with more  or  less real is t ic  values m ~ 30 and 7l ~ 1/10 the 
t h e r m o d y n a m i c  funct ions o f  the m e m b r a n e  are  a l ready  very close to those  of  
a m e m b r a n e  o f  infinite thickness.  

The presence or  absence of  a phase  t rans i t ion  in the i sotherm is indica ted  
in Table  I for the var ious  different  cases discussed in Sections 2 and 3. O f  
course,  a phase t rans i t ion  will also deve lop  if the l imit  7 ,l 0 is taken  for 

Table I. Presence or Absence of a Singular i ty  in the 
Isotherm 

No attractive forces 0 < 7l << 1 ~,l ,~ 0 

1 << m < w No No Yes 
m --, ov No Yes Yes 
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finite m. This case is represented in the third column of Table I. The first 
column summarizes the results of Section 2 for the system without attractive 
forces. 

4. AN A P P R O X I M A T I O N  M E T H O D  IN THE STATISTICAL 
M E C H A N I C S  OF LIPID BILAYERS 

Whereas for the present model the statistical mechanics can in many 
respects be solved exactly, this is not the case for more realistic biomembrane 
models. In this section an approximation method for the calculation of the 
configurational entropy will be developed, the merits of which can subse- 
quently be judged by comparison with the exact results of the preceding 
sections. The method to be followed is related to a method employed by de 
Gennes ~9~ for the study of fibrous structures; it is hoped that the calculations 
in this and the preceding section will help to clarify the approximate nature 
of this continuum approach. 

Again consider the model without attractive forces, as in Section 2. As 
before the number of configurations of R hydrocarbon chains, each of  length 
ml, starting at lattice points (1, fi), ( 1, J2),..., ( 1, ja) and ending at lattice points 
(m + 1, Jl'), (m + 1, j2'),-.., (m + 1, JR') will be denoted by Qm(JI', j2',..., jR'[ 
J~,j2 ..... jR). Comparing the configurations of R chains for chain lengths 
m + 1 and m, one finds that Qm+l is related to Qm by the relation 

Q~+I(J']J) = ~ '  Qm(J"lJ) (48) 
F, 

where the series of indices ( j l , j 2  ..... jR) is abbreviated by j, and where the 
prime on the summation indicates the constraints 

. r e  - p  - t 

Jz = J l '  -+ 1, 3~ =J2 '  + I,..., J4 =JR _+ 1 (49a) 

and 

1 ~fl" <j~' < - - . < j ~  ~< n (49b) 

If  the density of hydrocarbon chains is not too near unity, Qm(j"[J) will, for 
fixed m and fixed initial positions j, be a smoothly varying function of the 
components of j"; when the value of one of the j ; , j~ , . . . , j ' ~  is increased by 
_+ 1 the relative variation of Qm will be small compared to unity. It should, 
therefore, be a good approximation to replace Qm by a continuous function 
Qm(x'~, x~,. . . ,  x~) which equals Q~(j"]j) when x~ = 2lj~, x2 = 2lj~ ..... x'~ = 
2t/~, and which varies smoothly in between. 
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In terms of this function, Qm(j']j) can be expanded in a Taylor series in 
powers of the components of (j" - j'): 

n ~3Qm 
Qm(J"lJ) = Qm(x') + I ~, (j2 - A ' )  ex,' 

02Ore -F ... (50) 
+ ~ ( j2  - j. ')(j~:" - js  i~x,,' ~x.~ 0.,~" = i 

Upon summation of both sides of the equality over all j" that obey the con- 
straint (49a), all odd terms on the right-hand side vanish, whereas a typical 
even term is easily shown to be in leading order in R 

12k 
~.. ~ ,  (J;1 - Js - . i '~2) "'" (J•2k - J',~2k) a~kQ.,l~x'~l ax'~2 ' ~x'~2~ 

(2k) ! t~) r. 

= [ 12z ~2\k + Z)]Qm(x') (51) 2~L~.. {~.= ~ ex;~J o( R~- 

Substitution of (50) and (51) into (48), and picking in the summation over k 
the contribution of largest order in R, one finds the recurrent relation 

Qm+l(x) = 2 R exp ~ ~ Q~(x) (52) 
C ~ = 1  

Thus, if eigenvalues and eigenfunctions of the differential operator in the 
exponential are denoted by A~, ~(x) ,  

and if 

then 

2 ~ ~(x) = z~k(x) (53) 

Ql(x) = ~ ckq~(x) (54) 
/c 

Qm + l(x) = 2 mR ~ e-ma~c~k(x ) (55) 
/r 

In the limit m - +  oo only the term corresponding to the smallest eigenvalue 
Ao will survive, and the configurational entropy per lattice point is found to be 

So(p) /kB  = p In 2 -- lim (Ao/n) (56) 
n - - ,  oo 

This relation thus expresses the configurational entropy per lattice point in 
terms of the ground state of the diffusion equation (53). 
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Up till now the second constraint (49b) has not been taken into account. 
Since the hydrocarbon chains are inpenetrable, Q,~(xl, x2,..., xR) has to 
vanish whenever any two coordinates approach each other within a distance 
smaller than 2l. This is most easily taken into account by imposing the 
boundary condition 

lira q~k(x) = 0, a = 1, 2,..., R - 1 (57) 
~r +l~Xa 

on the solutions of (53). Note that the eigenfunctions q~k(x) are only defined 
f o r 0  ~< xl ~< x2 ~<-..~< xR ~< L. 

It is well known that (53) with the boundary condition (57) represents 
the eigenvalue problem of: (i) a one-dimensional gas of  free fermions; (2) a 
one-dimensional gas of hard, rodlike bosons, in the limit in which the length 
of the rods (but not the boundary condition on the wave function !) vanishes. 
The (unnormalized) ground state was found by Girardeau (I~ to have the 
form: 

"IT 
,Do(X) = ~ sin/~ (x~ - x~,) (58) 

I<~<~'_<R 

where for convenience R has been assumed to be odd. The ground-state 
energy was found to be 

12 (_~)2 +(R- 1)/2 
= E k2 (59) Ao ~ k = - (•- 1)/2 

The limiting ground-state energy per lattice point on the membrane surface 
equals 

f_ lira ao ~.2 +,~2 s r d~ = ~ pa (60) 
. - , ~ o  n = ~ -  D/2 

Substituting this result into (56), we find the configurational entropy to be 

So(p)/kB = p In 2 - (~r2/24)p a (61) 

Comparison with the exact results (16) and (21) shows that this approximation 
technique leads to results which are in good agreement with the rigorous ones 
provided the density of  lipids is not too close to unity. 

5. C O N C L U D I N G  R E M A R K S  

Table I summarizes the main properties of  the model for the various 
cases discussed: finite or infinite thickness, presence or absence of attractive 
forces, finite or infinite range of the attractive forces. Although further 
calculations would be needed to unambiguously identify the nature of  the 
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two phases, we would like to suggest the following picture. In the limit 
m -->c~ the attractive forces between the head groups of the lipids had to be 
taken of a strength which diverges with m in order to have the membrane 
surface exert an influence over the thermodynamic functions even in this 
limit of an infinitely thick membrane. Thus, if only two lipids are inside the 
system, their head groups will condense upon each other under the influence 
of these very strong attractions. If more lipids are added, they will condense 
onto the previous ones and form a growing semicrystalline lipid bilayer of 
density ps(T) which has too few degrees of freedom to exert a pressure. It is 
only when the density reaches the value p~(T) that the bilayer fills the entire 
system; further addition of lipids is only possible under a pressure exerted on 
the wails of the container. The equation of state (45) thus directly reflects the 
process of self-assemblage of the lipid bilayer and ps(T) would be the density 
of such a membrane when spontaneously formed out of a solution of lipids. 

Thus from the point of view of physical interpretation the interesting 
feature of this model is that the solution in the case of attractive forces shows 
a singularity which reflects the completion of the process of self-assemblage 
of the lipid bilayer. This singularity is found in the isotherm for any tem- 
perature. 

For densities larger than ps(T) the membrane is probably in a smectic 
mesophase. 

It might be of interest to compare the properties of this model with 
those of the Zwanzig-Lauritzen model of polymer chain foldingJ 11-13~ The 
latter model can be considered as describing the self-assemblage of a two- 
dimensional macromolecular crystal by the regular folding of a single polymer 
chain. Depending on the parameters, the Zwanzig-Lauritzen model has a 
crystalline phase in a certain regime of the temperature, whereas the model of 
Section 3 has such a phase for any temperature. 

It is finally of interest to remark that the interactions between the polar 
head groups of the lipids (in the model of Section 3 represented by a decaying 
exponential) should be identified with the total effective interaction of the 
lipids in an aqueous medium and not with the interaction of the lipids in 
vacuum. Actually the bare lipid-lipid interaction will be "renormal ized" to 
a considerable extent by the ionic composition of the aqueous medium. It is 
even conceivable that the effective lipid-lipid interaction is attractive whereas 
the bare interaction is repulsive, or that a change in the metabolism of the 
cell will lead to such a change in the ionic composition of the medium and the 
effective lipid-lipid interaction that the membrane will make a transition to 
another phase. This would provide a tentative mechanism for some of the 
regulatory functions of biomembranes. Since the present model is in many 
respects accessible to explicit calculation, it is hoped that it will enable a more 
quantitative study of some of these questions in the near future. 
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